REPOSITORY


POLTEKKES KEMENKES JAKARTA II

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Help Information Statistik
Jelajahi ▼
Subject Year Author Prodi Jurusan Jenis
Home
Beranda Bantuan Informasi Statistik
No image available for this title
Penanda Bagikan

Publikasi Dosen

Non-Invasive Classification of Blood Glucose Level for Early Detection Diabetes Based on Photoplethysmography Signal

Ernia Susana - Nama Orang; Nursama Heru Apriantoro - Nama Orang; Kalamullah Ramli - Nama Orang; Hendri Murf - Nama Orang;

Monitoring systems for the early detection of diabetes are essential to avoid potential
expensive medical costs. Currently, only invasive monitoring methods are commercially available.
These methods have significant disadvantages as patients experience discomfort while obtaining
blood samples. A non-invasive method of blood glucose level (BGL) monitoring that is painless
and low-cost would address the limitations of invasive techniques. Photoplethysmography (PPG)
collects a signal from a finger sensor using a photodiode, and a nearby infrared LED light. The
combination of the PPG electronic circuit with artificial intelligence makes it possible to implement
the classification of BGL. However, one major constraint of deep learning is the long training phase.
We try to overcome this limitation and offer a concept for classifying type 2 diabetes (T2D) using a
machine learning algorithm based on PPG. We gathered 400 raw datasets of BGL measured with PPG
and divided these points into two classification levels, according to the National Institute for Clinical
Excellence, namely, “normal” and “diabetes”. Based on the results for testing between the models,
the ensemble bagged trees algorithm achieved the best results with an accuracy of 98%.


Ketersediaan
#
Kampus A 001.43
ART0000000000616
Tersedia namun tidak untuk dipinjamkan - For Reading
Informasi Detail
Judul Seri
-
No. Panggil
001.43
Penerbit
: MDPI., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
001.43
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
Diabetes
ensemble bagged trees
machine learning
photoplethysmography
blood glucose levels
Info Detail Spesifik
Publikasi pada Jurnal Information 2022, 13, 59. https:// doi.org/10.3390/info13020059; kdag200523-9
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Non-Invasive Classification of Blood Glucose Level for Early Detection Diabetes Based on Photoplethysmography Signal
  • Turnitin Non-Invasive Classification of Blood Glucose Level for Early Detection Diabetes Based on Photoplethysmography Signal
Komentar

Anda harus masuk sebelum memberikan komentar


NPP 3174072C0000001

Link

  • Web Utama
  • Web Perpustakaan
  • Repository
  • KINK
  • Eresources PNRI

Kontak Kami

Perpustakaan Poltekkes Kemenkes Jakarta II
Jalan Hang Jebat III/F3 Kebayoran Baru Jakarta 12120

Telp.: +6221-7397641
Email: perpus@poltekkesjkt2.ac.id

Cari


Download

Tumbuh Bersama

Tumbuh bersaama kami dengan pengetahuan yang menakjubkan

Temukan, Pelajari, Berkembang

Perpustakaan, Membangkitkan Keajaiban Lintas Generasi

Nyalakan Masa Depan Anda

Alat dan Panduan untuk Perjalanan Setiap Pembelajar

Baca. Jelajahi. Raih

Dimana Imajinasi Menjadi Kenyataan


Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik