Publikasi Dosen
Analisis Karakter Segmen Abnormal pada Citra Mamografi dengan Menggunakan Berbagai Metode Preprocessing Citra
Abstract
Penelitian ini menganalisis pengaruh penerapan beberapa jenis algoritma preprocessing untuk mencari karakteristik segmen abnormal yang tampak pada citra mamografi. Mamografi merupakan pemeriksaan radiografi khusus payudara. Penerapan algoritma preprocessing yang terdiri dari metode filtering, contrast enhancement, sharpening, dan smoothing diharapkan dapat mengurangi noise dan meningkatkan kontras citra mamografi serta membantu ahli radiologi untuk melakukan diagnosis pada citra. Pada penelitian ini akan digunakan dua algoritma filtering yaitu median filter dan gaussian filter. Selain itu digunakan dua algoritma contrast enhancement yaitu global histogram equalization dan CLAHE (Contrast Limited Adaptive Histogram Equalization). Nilai piksel rata-rata segmen abnormal berkisar antara 206.9-213.3 dan rasio sumbu minor/mayor segmen abnormal berkisar antara 0.5-0.7.Pemilihan jenis metode filter (median filter dan gaussian filter) tidak mempengaruhi hasil nilai piksel rata-rata maupun rasio sumbu minor/mayor dan ukuran segmen abnormal, namun pemilihan jenis metode peningkatan kontras (CLAHE dan global histogram equalization) menghasilkan segmen abnormal dengan ukuran yang berbeda. Metode global histogram equalization menghasilkan segmen abnormal yang tidak dapat dibedakan dengan sekitarnya sehingga hasil ekstrasi segmen terlalu besar.
Tidak tersedia versi lain